skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jiang, Danqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The origin of rupture segmentation along subduction zone megathrusts and linkages to the structural evolution of the subduction zone are poorly understood. Here, regional-scale seismic imaging of the Cascadia margin is used to characterize the megathrust spanning ~900 km from Vancouver Island to the California border, across the seismogenic zone to a few tens of kilometers from the coast. Discrete domains in lower plate geometry and sediment underthrusting are identified, not evident in prior regional plate models, which align with changes in lithology and structure of the upper plate and interpreted paleo-rupture patches. Strike-slip faults in the lower plate associated with oblique subduction mark boundaries between regions of distinct lower plate geometry. Their formation may be linked to changes in upper plate structure across long-lived upper plate faults. The Juan de Fuca plate is fragmenting within the seismogenic zone at Cascadia as the young plate bends beneath the heterogeneous upper plate resulting in structural domains that coincide with paleo-rupture segmentation. 
    more » « less
  2. It has been previously proposed that a megasplay fault within the Cascadia accretionary wedge, spanning from offshore Vancouver Island to Oregon, has the potential to slip during a future Cascadia subduction zone earthquake. This hypothetical fault has major implications for tsunami size and arrival times and is included in disaster-planning scenarios currently in use in the region. This hypothesis is evaluated in this study using CASIE21 deep-penetrating and U.S. Geological Survey high-resolution seismic reflection profiles. We map changes in wedge structural style and seismic character to identify the inner-outer wedge transition zone where a megasplay fault has been previously hypothesized to exist and evaluate evidence for active faulting within this zone. Our results indicate that there is not an active, through-going megasplay fault in Cascadia, but instead, the structure and activity of faulting at the inner-outer wedge transition zone is highly variable and segmented along strike, consistent with the segmentation of other physical and mechanical properties in Cascadia. Wedge sedimentation, plate dip, and subducting topography are proposed to play a major role in controlling megasplay fault development and evolution. Incorporating updated megasplay fault location, geometry, and activity into modeling of Cascadia earthquakes and tsunamis could help better constrain associated hazards. 
    more » « less